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Backgrounds

Quantum switch!: coherent superposition of causal orders
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LChiribella et al. 2009; Chiribella et al. 2013.
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Quantum switch!: coherent superposition of causal orders
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Quantum switch is an example of indefinite causal order
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Backgrounds

Quantum switch: coherent superposition of causal orders

Question
What is a power of the quantum switch in quantum information
processing?

3/27



Backgrounds

Quantum switch: coherent superposition of causal orders

Question
What is a power of the quantum switch in quantum information
processing?

Advantage of the quantum switch on...

e Quantum query complexity

e Quantum communication complexity

Multipartite games

Quantum Shannon theory

Quantum metrology

Quantum thermodynamics
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Advantage of the quantum switch in quantum query complexity

2Aratjo, Costa, and Brukner 2014.
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Backgrounds

Advantage of the quantum switch in quantum query complexity

Fourier promise problem?

Given a set of nl-dimensional unitary gates {U;}7-). Define I,

for a permutation o, of n unitaries by My = Uy, (n—1) - * Uy, (0)-

Promise: dy s.t. Iy = w9 Ty Vx, where w = g2mi/n!

Task: Decide y € {0,--- ,n! — 1}

e Quantum n-switch: O(n) calls of unitaries U;

e Fixed causal order: Q(n?)

— Quadratic advantage!

2AraL’Jjo, Costa, and Brukner 2014.
427
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Quantum n-switch
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n! combinations

Quantum switch = Quantum 2-switch
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Exponential separation?

3Araijo, Costa, and Brukner 2014.
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Exponential separation?
For the Fourier promise problem, quadratic separation is optimal.

More generally, the quantum n-switch of unitary channels can be
simulated by O(n?) calls of input channels3.

n =2 case*:

Pc Fe

Pr

[11 [51
LA] L8] A

@

simulates the quantum switch if A and B are unitary channels.

3Araijo, Costa, and Brukner 2014.
4Chiribella et al. 2009; Chiribella et al. 2013.
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This talk

Research question
Is there an exponential separation between the quantum switch
and a fixed causal order?

5Guérin et al. 2016.
7/27



This talk

Research question
Is there an exponential separation between the quantum switch
and a fixed causal order?

— Yes!

5Guérin et al. 2016.
7/27



This talk

Research question
Is there an exponential separation between the quantum switch
and a fixed causal order?

— Yes!

Remark

e Exponential separation is only known in communication
settings®

5Guérin et al. 2016.
7/27



This talk

Research question
Is there an exponential separation between the quantum switch
and a fixed causal order?

— Yes!

Remark

e Exponential separation is only known in communication
settings®

e We need to extend the input channels to non-unitary channels

5Guérin et al. 2016.
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Outline of this talk

e Framework: Definition of quantum switch and causal orders

e Problem setting

e Main result: Exponential separation between quantum switch
and causally ordered circuit

e Future works
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Framework

Definition (quantum supermap)
A quantum supermap is a (multi-)linear map of quantum
channels.

Definition (quantum switch)

Quantum switch is a 2-slot quantum supermap such that
Ssurren(U, V)() = S - ST, (1)
S=VU®|0X0| + UV ® |1X1], (2)

for unitary channels ¢/ and V.

Theorem®

The above definition uniquely defines the quantum switch.
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Framework

Theorem®

The above definition uniquely defines the quantum switch.

Ssurrc(A, B)( Zs,, i (1)
Sj = BjA; ®[0)0] + AiBj ® [1X1| (2)

for A() = 32, Ai- Al B() =3, B - B

5Dong et al. 2023.
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Framework

Definition (quantum circuit with fixed causal order’®)
A quantum circuit with fixed causal order (QC-FO) is a quantum

supermap implemented by

Input channels
" N

"also called quantum comb

8Chiribella, D’Ariano, and Perinotti 2008.
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Definition (quantum circuit with classical control of the
causal order®)
A quantum circuit with classical control of the causal order

(QC-CCQ) is a quantum supermap implemented by

Input channels

Remark
QC-CC is believed to be the most general quantum supermap

achievable by standard quantum circuits.

9Wechs et al. 2021.
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Framework

Proposition
quantum switch ¢ QC-FO

12/27



Framework

Proposition
quantum switch ¢ QC-FO

In other words,
Proposition

Ssurtcu(A, B) cannot be implemented by using a single call of
each A and B with a fixed causal order

12/27



Framework

Proposition
quantum switch ¢ QC-CC

In other words,
Proposition

Ssurtcu(A, B) cannot be implemented by using a single call of
each A and B with a classical control of the causal order

12/27



Framework

Proposition
quantum switch ¢ QC-CC

In other words,
Proposition

Ssurtcu(A, B) cannot be implemented by using a single call of
each A and B with a classical control of the causal order

How about having multiple copies of the input channels?

12/27



Problem setting

Question
How many copies of the input quantum channels are needed to
simulate the quantum switch using a fixed causal order?

SWITCH

A
{8
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Problem setting

Question
How many copies of the input quantum channels are needed to
simulate the quantum switch using a classical control of the

causal order?

SWITCH

13 /27



Main result

Theorem

There is no (M + 1)-slot supermap with fixed causal order C
satistying

C(A,..., A B) = Ssurrca(A, B) (3)
M

for all n-qubit channels A and B, if M < max(2,2" — 1).
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causal order C satistying

C(A,..., A B) = Ssurrca(A, B) (3)
M

for all mixed unitary n-qubit channels A and B, if
M < max(2,2" — 1).
Remark

e No-go on deterministic and exact simulation

e Multiple copies of only A
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Proof sketch

3 steps:

1. Linearity argument
2. Uniqueness

3. Contradiction with QC-FO conditions
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Proof sketch

3 steps:

1. Linearity argument
2. Uniqueness

3. Contradiction with QC-FO conditions

First, prepare a nice representation of quantum supermaps
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Proof sketch (0. Choi representation)

Definition (Choi representation)
Choi matrix of a linear map Q : L(A) — L(B):

Q= ZI (1) € L(A® B), (4)

where {|i)} is the computational basis of H# and IL(A) is the set
of linear operators on HA.
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Proof sketch (0. Choi representation)

Definition (Choi representation)
Choi matrix of a linear map Q : L(A) — L(B):

Q= ZI (1) € L(A® B), (4)

where {|i)} is the computational basis of H# and IL(A) is the set
of linear operators on HA.

Choi matrix of unitary operation 2(-) = U - U' is represented as a
rank-1 operator

U (5)

where |U)) is a Choi vector defined by [U)) == 37 [)* @ Ui).
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Proof sketch (0. Choi representation)

Quantum mechanics in the Choi representation

e Composition < link product
e CPTP map Q <+ @ > 0 and affine conditions on @

Link product
Link product of Q € L(A® B) and R € L(B® C)

Q* R = Trg[(Q*8 @ 1¢)T5(14 ® REC)] (6)
which satisfies

Q(p) = Q*p, (7)
T=QoR&T=Qx*R. (8)



Proof sketch (0. Choi representation)

Quantum supermap in the Choi representation
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Quantum supermap in the Choi representation

QC-FO

S(C1,--,Ch)=Vyo(Ch®L)o---0(C1®@1)oVy (9)
S*(C1®”'®Cn):VM*C,,*‘--*Cl*VO (10)
forS=Vyx---x W

In general, Choi matrix of the output channel S(Cy,--- ,Cy) is
given by Sx (GG ®---® Cp)

S is called the Choi matrix of the supermap S

18/27



Proof sketch (0. Choi representation)

Characterization of the Choi matrix S of the supermap S
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Proof sketch (0. Choi representation)

Characterization of the Choi matrix S of the supermap S
S preserves CP maps < S >0

S preserves TP maps < affine conditions on S
S € QC-FO < S > 0 + (more strict) affine conditions on S
SeQCCC& S=3,5, S >0 + affine conditions on {S;};

Quantum switch

The Choi matrix Ssyrrcy of the quantum switch is given by a
rank-1 operator

Ssurten = | Sswrren){( Ssurtcn] (11)
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Proof sketch

3 steps:

1. Linearity argument
2. Uniqueness

3. Contradiction with QC-FO conditions
Logical flow:

e Assume that C simulates the quantum switch
= Restrict the form of C (steps 1, 2)

e The restricted form does not satisfy QC-FO conditions (step 3)

20/27
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For simplicity, we consider M = 2 case
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For simplicity, we consider M = 2 case
1. Linearity argument
Assume that
C(A, A, B) = Ssyrtcu( A, B) (12)
for A = Uy, Us, % and B =V for unitary operations Uy, Uz, V,

C(th, U1, V) = Ssurrea(Us, V), (13)
C(Uz,Ur, V) = Ssurtcu(Ua, V), (14)

Ui +U U +Us U + U

2 2 7 o 1Y

, V) = Ssurrca(

C(
thus
C(Ur, U, V) + C(Ur, U1, V) = Ssurtcu(Ur + Up, V). (16)
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Proof sketch (1. Linearity argument)

In terms of Choi:
Cx (JUL (U] ® |U2)){(Uz| @ [V V)
+ Cx (JU)(U2| @ U )((Ur] @ [V V)
= | Ssurrca){ Ssurrcn| * [(|UL)(U1| + [U2)){(Ua]) @ [V VI] (17)
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Proof sketch (1. Linearity argument)

In terms of Choi:
Cx (JUL (U] ® |U2)){(Uz| @ [V V)
+C x (|U2)(Ua| ® [UD){((Ur] @ [V V]) < positive
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Proof sketch (1. Linearity argument)

In terms of Choi:

Cx (|JUY(U1| @ |U2)(U2| ® [V V)

< [Ssurrer){(Sswrrca| * [(|U)(Ur] + [U2))(U2]) @ [VI(V]] (17)
Since C >0, C is written as C = ), [G;){(Ci|. Then

|GNCGil = (JUL(UL] @ [U2))(Ua] @ [VIV])

< Cx (|[Un)(Ur| @ [U2))(Ua| @ [VIK(VI)

< [Ssurren){(Ssurrca| * [(|U)(U1| + [U2))(U2]) ® [VI(VI]. (18)
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Proof sketch (1. Linearity argument)

In terms of Choi:

C* (JU)(Ui] @ |U2))(Ua| @ [V))(V])

< [Sswrrer)(Sswrten| * [(|Un)(U1]| + [U2)(U2]) @ [VI(VI] (17)
Since C >0, C is written as C = ), [G;){(Ci|. Then

|GGl * (JUD)(Ui] @ [U2))(Ua] @ [V))(V])

< Cx (JU)(Ur| @ [U2)(Ua| @ [VIH(V])

< [Ssurter)(( Sswrrcn| * [(|U1)(Ur] + [U2)(U2]) @ [VI(VI]. (18)
Thus,

|Ci) x (|U1)) ® [Ua)) @ [V))

2

= 5" P (U1, Uz, V)|Ssiizzen) * (IU) @ V) (19)
=1
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Proof sketch (2. Uniqueness)

2. Uniqueness

%0dake, Yoshida, and Murao 2024 (Poster in Tuesday).
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Gi)) x (JUn) @ [U2)) @ [V))

2
=3 PO (U1, Ua, V)[Ssurca) * (U) @ V) (20)
=1
holds if
2 —_
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2. Uniqueness

Gi)) x (JUn) @ [U2)) @ [V))
2

=3 PO (U1, Ua, V)[Ssurca) * (U) @ V) (20)
=1
holds if
2 —_
|Gi) = Z | Sswrren)® ® |p,w>>l (21)
=1

with p(l)(U1, Us, V) = ’P,(l)» | Up).

i

We show the converse using a differentiation technique!®.

190dake, Yoshida, and Murao 2024 (Poster in Tuesday).
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Proof sketch (2. Uniqueness)

We show that pfl)(U;l7 Us, V) is

1. linear with respect to Uy

2. independent of U; and V

by differentiating with respect to Uy, U,, V
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Proof sketch (2. Uniqueness)

We show that p{")(Uy, Us, V) is

i
1. linear with respect to Uy

2. independent of U; and V

by differentiating with respect to Uy, U,, V
= 3|p{") such that p{"' (U1, Uz, V) = [p{") = | Up)

Gi)) x (JUn) @ [U2)) @ [V)
2

= ZP,(/)(UL Uz, V)| Ssurren)) * (1Un) ® [V) (22)
=1
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Proof sketch (2. Uniqueness)

We show that p{")(Uy, Us, V) is

1

1. linear with respect to Uy

2. independent of U; and V

by differentiating with respect to Uy, U,, V
= 3|p{") such that p{"' (U1, Uz, V) = [p{") = | Up)

1

G * (1UL) @ |Uz) @ | V)
2
= (ISsurren)® @ [P )+ (IU) @ [ @ [V))  (22)

I=1

= |G = T2, |Ssurtan)® ® [p{)

24 /27
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3. Contradiction with QC-FO conditions
If C is QC-FO, then C should satisfy affine conditions

As shown in steps 1 and 2, if C simulates the quantum switch, then
-= Zi |C,>><< C,| for ‘C,» = ZI2:1 ‘SSWITCH»B ® ’P,(I)»I

— Contradiction!!

25 /27



Proof sketch (3. Contradiction with QC-FO conditions)

3. Contradiction with QC-FO conditions
If C is QC-FO, then C should satisfy affine conditions

As shown in steps 1 and 2, if C simulates the quantum switch, then
C =22 1GHG for |G) = 212:1 | Sswrren)® @ ]pfl)»’
— Contradiction!!

Similar argument for QC-CC

25 /27
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e Approximate or probabilistic settings?

More relaxed settings (e.g. only simulating reduced quantum
switch)?

Multiple copies of both input channels A and B7?

Is it possible to exactly simulate a quantum switch by using
exponentially many copies of input channels?

— We also investigate these questions by numerical simulations in
a companion paper!!.

1 Bavaresco et al., In preparation
26 /27



Conclusion

Take home

Simulation of the quantum switch is (at least) exponentially hard
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Conclusion

Take home

Simulation of the quantum switch is (at least) exponentially hard

Proof technique

Linear algebra + differentiation technique

Thank you!
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