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What is a power of the quantum switch in quantum information
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Backgrounds

Advantage of the quantum switch in quantum query complexity

Fourier promise problem2

Given a set of n!-dimensional unitary gates {Ui}n−1
i=0 . Define Πx

for a permutation σx of n unitaries by Πx = Uσx (n−1) · · ·Uσx (0).
Promise: ∃y s.t. Πx = ωxyΠ0 ∀x , where ω := e2πi/n!

Task: Decide y ∈ {0, · · · , n!− 1}

• Quantum n-switch: O(n) calls of unitaries Ui

• Fixed causal order: Ω(n2)

→ Quadratic advantage!

2Araújo, Costa, and Brukner 2014.
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Backgrounds

Quantum n-switch

A1 ≺ A2 ≺ · · · ≺ An ⊕ A2 ≺ A1 ≺ · · · ≺ An ⊕ · · ·︸ ︷︷ ︸
n! combinations

Quantum switch = Quantum 2-switch
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Backgrounds

Exponential separation?

For the Fourier promise problem, quadratic separation is optimal.

More generally, the quantum n-switch of unitary channels can be
simulated by O(n2) calls of input channels3.

n = 2 case4:

simulates the quantum switch if A and B are unitary channels.

3Araújo, Costa, and Brukner 2014.
4Chiribella et al. 2009; Chiribella et al. 2013.
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This talk

Research question
Is there an exponential separation between the quantum switch
and a fixed causal order?

→ Yes!

Remark

• Exponential separation is only known in communication
settings5

• We need to extend the input channels to non-unitary channels

5Guérin et al. 2016.
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Outline of this talk

• Framework: Definition of quantum switch and causal orders

• Problem setting

• Main result: Exponential separation between quantum switch
and causally ordered circuit

• Future works
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Framework

Definition (quantum supermap)
A quantum supermap is a (multi-)linear map of quantum
channels.

Definition (quantum switch)
Quantum switch is a 2-slot quantum supermap such that

SSWITCH(U ,V)(·) = S · S†, (1)

S = VU ⊗ |0⟩⟨0|+ UV ⊗ |1⟩⟨1| , (2)

for unitary channels U and V.

Theorem6

The above definition uniquely defines the quantum switch.

SSWITCH(A,B)(·) =
∑
ij

Sij · S†
ij , (3)

Sij = BjAi ⊗ |0⟩⟨0|+ AiBj ⊗ |1⟩⟨1| (4)

for A(·) =
∑

i Ai · A†
i , B(·) =

∑
j Bj · B†

j

6Dong et al. 2023.
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Framework

Definition (quantum circuit with fixed causal order78)
A quantum circuit with fixed causal order (QC-FO) is a quantum
supermap implemented by

Input channels

7also called quantum comb
8Chiribella, D’Ariano, and Perinotti 2008.
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Definition (quantum circuit with classical control of the
causal order9)
A quantum circuit with classical control of the causal order
(QC-CC) is a quantum supermap implemented by

Input channels

Remark
QC-CC is believed to be the most general quantum supermap
achievable by standard quantum circuits.

9Wechs et al. 2021.
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Framework

Proposition

quantum switch /∈ QC-FO

In other words,

Proposition

SSWITCH(A,B) cannot be implemented by using a single call of
each A and B with a

How about having multiple copies of the input channels?
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Problem setting

Question
How many copies of the input quantum channels are needed to
simulate the quantum switch using a fixed causal order?

SWITCH

?
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Main result

Theorem

There is no (M + 1)-slot supermap with fixed causal order C
satisfying

C(A, . . . ,A︸ ︷︷ ︸
M

,B) = SSWITCH(A,B) (3)

for all n-qubit channels A and B, if M ≤ max(2, 2n − 1).

Remark

• No-go on deterministic and exact simulation

• Multiple copies of only A
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Proof sketch

3 steps:

1. Linearity argument

2. Uniqueness

3. Contradiction with QC-FO conditions

First, prepare a nice representation of quantum supermaps
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Proof sketch (0. Choi representation)

Definition (Choi representation)

Choi matrix of a linear map Q : L(A)→ L(B):

Q :=
∑
ij

|i⟩⟨j |A ⊗Q(|i⟩⟨j |) ∈ L(A⊗ B), (4)

where {|i⟩} is the computational basis of HA and L(A) is the set
of linear operators on HA.

Choi matrix of unitary operation U(·) = U · U† is represented as a
rank-1 operator

|U⟩⟩⟨⟨U| (5)

where |U⟩⟩ is a Choi vector defined by |U⟩⟩ :=
∑

i |i⟩
A ⊗ U |i⟩.
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Proof sketch (0. Choi representation)

Quantum mechanics in the Choi representation

• Composition ↔ link product

• CPTP map Q ↔ Q ≥ 0 and affine conditions on Q

Link product

Link product of Q ∈ L(A⊗ B) and R ∈ L(B ⊗ C )

Q ∗ R := TrB [(Q
AB ⊗ 1C )TB (1A ⊗ RBC )] (6)

which satisfies

Q(ρ) = Q ∗ ρ, (7)

T = Q ◦R ⇔ T = Q ∗ R. (8)

17 / 27



Proof sketch (0. Choi representation)

Quantum supermap in the Choi representation

QC-FO

S(C1, · · · , Cn) = VM ◦ (Cn ⊗ 1) ◦ · · · ◦ (C1 ⊗ 1) ◦ V0 (9)

S ∗ (C1 ⊗ · · · ⊗ Cn) = VM ∗ Cn ∗ · · · ∗ C1 ∗ V0 (10)

for S = VM ∗ · · · ∗ V0

In general, Choi matrix of the output channel S(C1, · · · , Cn) is
given by S ∗ (C1 ⊗ · · · ⊗ Cn)

S is called the Choi matrix of the supermap S

18 / 27
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Proof sketch (0. Choi representation)

Characterization of the Choi matrix S of the supermap S

S preserves CP maps ⇔ S ≥ 0

S preserves TP maps ⇔ affine conditions on S

S ∈ QC-FO ⇔ S ≥ 0 + (more strict) affine conditions on S

S ∈ QC-CC ⇔ S =
∑

i Si , Si ≥ 0 + affine conditions on {Si}i

Quantum switch
The Choi matrix SSWITCH of the quantum switch is given by a
rank-1 operator

SSWITCH = |SSWITCH⟩⟩⟨⟨SSWITCH| (11)
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Proof sketch

3 steps:

1. Linearity argument

2. Uniqueness

3. Contradiction with QC-FO conditions

Logical flow:

• Assume that C simulates the quantum switch
⇒ Restrict the form of C (steps 1, 2)

• The restricted form does not satisfy QC-FO conditions (step 3)

20 / 27



Proof sketch

3 steps:

1. Linearity argument

2. Uniqueness

3. Contradiction with QC-FO conditions

Logical flow:

• Assume that C simulates the quantum switch
⇒ Restrict the form of C (steps 1, 2)

• The restricted form does not satisfy QC-FO conditions (step 3)

20 / 27



Proof sketch

3 steps:

1. Linearity argument

2. Uniqueness

3. Contradiction with QC-FO conditions

Logical flow:

• Assume that C simulates the quantum switch
⇒ Restrict the form of C (steps 1, 2)

• The restricted form does not satisfy QC-FO conditions (step 3)

20 / 27



Proof sketch (1. Linearity argument)

For simplicity, we consider M = 2 case

1. Linearity argument

Assume that

C(A,A,B) = SSWITCH(A,B) (12)

for A = U1,U2,
U1+U2

2 and B = V for unitary operations U1,U2,V,

C(U1,U1,V) = SSWITCH(U1,V), (13)

C(U2,U2,V) = SSWITCH(U2,V), (14)

C(U1 + U2

2
,
U1 + U2

2
,V) = SSWITCH(

U1 + U2

2
,V), (15)

thus

C(U1,U2,V) + C(U2,U1,V) = SSWITCH(U1 + U2,V). (16)
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Proof sketch (1. Linearity argument)

In terms of Choi:

C ∗ (|U1⟩⟩⟨⟨U1| ⊗ |U2⟩⟩⟨⟨U2| ⊗ |V ⟩⟩⟨⟨V |)
+ C ∗ (|U2⟩⟩⟨⟨U2| ⊗ |U1⟩⟩⟨⟨U1| ⊗ |V ⟩⟩⟨⟨V |)
= |SSWITCH⟩⟩⟨⟨SSWITCH| ∗ [(|U1⟩⟩⟨⟨U1|+ |U2⟩⟩⟨⟨U2|)⊗ |V ⟩⟩⟨⟨V |] (17)

Since C ≥ 0, C is written as C =
∑

i |Ci ⟩⟩⟨⟨Ci |. Then

|Ci ⟩⟩⟨⟨Ci | ∗ (|U1⟩⟩⟨⟨U1| ⊗ |U2⟩⟩⟨⟨U2| ⊗ |V ⟩⟩⟨⟨V |)
≤ C ∗ (|U1⟩⟩⟨⟨U1| ⊗ |U2⟩⟩⟨⟨U2| ⊗ |V ⟩⟩⟨⟨V |)
≤ |SSWITCH⟩⟩⟨⟨SSWITCH| ∗ [(|U1⟩⟩⟨⟨U1|+ |U2⟩⟩⟨⟨U2|)⊗ |V ⟩⟩⟨⟨V |]. (18)

Thus,

|Ci ⟩⟩ ∗ (|U1⟩⟩ ⊗ |U2⟩⟩ ⊗ |V ⟩⟩)

=
2∑

l=1

p
(l)
i (U1,U2,V )|SSWITCH⟩⟩ ∗ (|Ul⟩⟩ ⊗ |V ⟩⟩) (19)
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Proof sketch (2. Uniqueness)

2. Uniqueness

|Ci ⟩⟩ ∗ (|U1⟩⟩ ⊗ |U2⟩⟩ ⊗ |V ⟩⟩)

=
2∑

l=1

p
(l)
i (U1,U2,V )|SSWITCH⟩⟩ ∗ (|Ul⟩⟩ ⊗ |V ⟩⟩) (20)

holds if

|Ci ⟩⟩ =
2∑

l=1

|SSWITCH⟩⟩l3 ⊗ |p(l)i ⟩⟩
l̄ (21)

with p
(l)
i (U1,U2,V ) = |p(l)i ⟩⟩ ∗ |Ul̄⟩⟩.

We show the converse using a differentiation technique10.

10Odake, Yoshida, and Murao 2024 (Poster in Tuesday).
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Proof sketch (2. Uniqueness)

We show that p(l)i (U1,U2,V ) is

1. linear with respect to Ul̄

2. independent of Ul and V

by differentiating with respect to U1,U2,V

⇒ ∃|p(l)i ⟩⟩ such that p(l)i (U1,U2,V ) = |p(l)i ⟩⟩ ∗ |Ul̄⟩⟩

|Ci ⟩⟩ ∗ (|U1⟩⟩ ⊗ |U2⟩⟩ ⊗ |V ⟩⟩)
(22)

⇒ |Ci ⟩⟩ =
∑2

l=1 |SSWITCH⟩⟩l3 ⊗ |p
(l)
i ⟩⟩l̄
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Proof sketch (3. Contradiction with QC-FO conditions)

3. Contradiction with QC-FO conditions

If C is QC-FO, then C should satisfy affine conditions

As shown in steps 1 and 2, if C simulates the quantum switch, then
C =

∑
i |Ci ⟩⟩⟨⟨Ci | for |Ci ⟩⟩ =

∑2
l=1 |SSWITCH⟩⟩l3 ⊗ |p

(l)
i ⟩⟩l̄

→ Contradiction!!

Similar argument for QC-CC
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Future works

• Approximate or probabilistic settings?

• More relaxed settings (e.g. only simulating reduced quantum
switch)?

• Multiple copies of both input channels A and B?

• Is it possible to exactly simulate a quantum switch by using
exponentially many copies of input channels?

→ We also investigate these questions by numerical simulations in
a companion paper11.

11Bavaresco et al., In preparation
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Conclusion

Take home
Simulation of the quantum switch is (at least) exponentially hard

Proof technique
Linear algebra + differentiation technique

Thank you!
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