Simulating the quantum switch using causally ordered circuits requires at least an exponential overhead in query complexity

Hlér Kristjánsson*, Tatsuki Odake*, Satoshi Yoshida*, Philip Taranto, Jessica Bavaresco, Marco Túlio Quintino, Mio Murao (*These authors contributed equally) August 27, 2024

Causal order in quantum information processing

Causal order in quantum information processing

• Quantum computation

Causal order in quantum information processing

• Quantum computation

• Quantum communication

Quantum switch¹: coherent superposition of causal orders

¹Chiribella et al. 2009; Chiribella et al. 2013.

Quantum switch¹: coherent superposition of causal orders

Quantum switch is an example of indefinite causal order

¹Chiribella et al. 2009; Chiribella et al. 2013.

Quantum switch: coherent superposition of causal orders

Question

What is a power of the quantum switch in quantum information processing?

Quantum switch: coherent superposition of causal orders

Question

What is a power of the quantum switch in quantum information processing?

Advantage of the quantum switch on...

- Quantum query complexity
- Quantum communication complexity
- Multipartite games
- Quantum Shannon theory
- Quantum metrology
- Quantum thermodynamics

Advantage of the quantum switch in quantum query complexity

²Araújo, Costa, and Brukner 2014.

Advantage of the quantum switch in quantum query complexity

Fourier promise problem²

Given a set of *n*!-dimensional unitary gates $\{U_i\}_{i=0}^{n-1}$. Define Π_x for a permutation σ_x of *n* unitaries by $\Pi_x = U_{\sigma_x(n-1)} \cdots U_{\sigma_x(0)}$. Promise: $\exists y \text{ s.t. } \Pi_x = \omega^{xy} \Pi_0 \ \forall x$, where $\omega := e^{2\pi i/n!}$ Task: Decide $y \in \{0, \dots, n! - 1\}$

²Araújo, Costa, and Brukner 2014.

Advantage of the quantum switch in quantum query complexity

Fourier promise problem²

Given a set of *n*!-dimensional unitary gates $\{U_i\}_{i=0}^{n-1}$. Define Π_x for a permutation σ_x of *n* unitaries by $\Pi_x = U_{\sigma_x(n-1)} \cdots U_{\sigma_x(0)}$. Promise: $\exists y \text{ s.t. } \Pi_x = \omega^{xy} \Pi_0 \ \forall x$, where $\omega := e^{2\pi i/n!}$ Task: Decide $y \in \{0, \cdots, n! - 1\}$

- Quantum *n*-switch: O(n) calls of unitaries U_i
- Fixed causal order: $\Omega(n^2)$
- \rightarrow Quadratic advantage!

²Araújo, Costa, and Brukner 2014.

Quantum *n*-switch

$$\underbrace{A_1 \prec A_2 \prec \cdots \prec A_n \oplus A_2 \prec A_1 \prec \cdots \prec A_n \oplus \cdots}_{n! \text{ combinations}}$$

Quantum switch = Quantum 2-switch

Exponential separation?

⁴Chiribella et al. 2009; Chiribella et al. 2013.

³Araújo, Costa, and Brukner 2014.

Exponential separation?

For the Fourier promise problem, quadratic separation is optimal.

³Araújo, Costa, and Brukner 2014.

⁴Chiribella et al. 2009; Chiribella et al. 2013.

Exponential separation?

For the Fourier promise problem, quadratic separation is optimal.

More generally, the quantum *n*-switch of unitary channels can be simulated by $O(n^2)$ calls of input channels³.

 $n = 2 \text{ case}^4$:

simulates the quantum switch if \mathcal{A} and \mathcal{B} are unitary channels.

³Araújo, Costa, and Brukner 2014.

⁴Chiribella et al. 2009; Chiribella et al. 2013.

Is there an exponential separation between the quantum switch and a fixed causal order?

⁵Guérin et al. 2016.

Is there an exponential separation between the quantum switch and a fixed causal order?

 \rightarrow Yes!

⁵Guérin et al. 2016.

Is there an exponential separation between the quantum switch and a fixed causal order?

 \rightarrow Yes!

Remark

 $\bullet\,$ Exponential separation is only known in communication $\rm\,settings^5$

⁵Guérin et al. 2016.

Is there an exponential separation between the quantum switch and a fixed causal order?

\rightarrow Yes!

Remark

- Exponential separation is only known in communication settings⁵
- We need to extend the input channels to non-unitary channels

⁵Guérin et al. 2016.

- Framework: Definition of quantum switch and causal orders
- Problem setting
- Main result: Exponential separation between quantum switch and causally ordered circuit
- Future works

Framework

Definition (quantum supermap)

A quantum supermap is a (multi-)linear map of quantum channels.

Definition (quantum switch)

Quantum switch is a 2-slot quantum supermap such that

$$S_{\text{SWITCH}}(\mathcal{U}, \mathcal{V})(\cdot) = S \cdot S^{\dagger},$$
 (1)

$$S = VU \otimes |0\rangle\langle 0| + UV \otimes |1\rangle\langle 1|, \qquad (2)$$

for unitary channels ${\mathcal U}$ and ${\mathcal V}.$

Theorem⁶

The above definition uniquely defines the quantum switch.

Theorem⁶

The above definition uniquely defines the quantum switch.

$$S_{\text{SWITCH}}(\mathcal{A}, \mathcal{B})(\cdot) = \sum_{ij} S_{ij} \cdot S_{ij}^{\dagger}, \qquad (1)$$
$$S_{ij} = B_j A_i \otimes |0\rangle \langle 0| + A_i B_j \otimes |1\rangle \langle 1| \qquad (2)$$
for $\mathcal{A}(\cdot) = \sum_i A_i \cdot A_i^{\dagger}, \ \mathcal{B}(\cdot) = \sum_j B_j \cdot B_j^{\dagger}$

⁶Dong et al. 2023.

Definition (quantum circuit with fixed causal order⁷⁸**)** A quantum circuit with fixed causal order (QC-FO) is a quantum supermap implemented by

⁷also called quantum comb

⁸Chiribella, D'Ariano, and Perinotti 2008.

Definition (quantum circuit with classical control of the causal order⁹)

A quantum circuit with classical control of the causal order (QC-CC) is a quantum supermap implemented by

Remark

QC-CC is believed to be the most general quantum supermap achievable by standard quantum circuits.

⁹Wechs et al. 2021.

Proposition quantum switch \notin QC-FO

Proposition quantum switch \notin QC-FO

In other words,

Proposition

 $S_{\text{SWITCH}}(\mathcal{A}, \mathcal{B})$ cannot be implemented by using a single call of each \mathcal{A} and \mathcal{B} with a fixed causal order

Proposition quantum switch \notin QC-CC

In other words,

Proposition

 $S_{\text{SWITCH}}(\mathcal{A}, \mathcal{B})$ cannot be implemented by using a single call of each \mathcal{A} and \mathcal{B} with a classical control of the causal order

Proposition quantum switch \notin QC-CC

In other words,

Proposition

 $S_{\text{SWITCH}}(\mathcal{A}, \mathcal{B})$ cannot be implemented by using a single call of each \mathcal{A} and \mathcal{B} with a classical control of the causal order

How about having multiple copies of the input channels?

Question

How many copies of the input quantum channels are needed to simulate the quantum switch using a fixed causal order?

Question

How many copies of the input quantum channels are needed to simulate the quantum switch using a classical control of the causal order?

There is no (M + 1)-slot supermap with fixed causal order C satisfying

$$\mathcal{C}(\underbrace{\mathcal{A},\ldots,\mathcal{A}}_{M},\mathcal{B}) = \mathcal{S}_{\text{SWITCH}}(\mathcal{A},\mathcal{B})$$
(3)

for all *n*-qubit channels \mathcal{A} and \mathcal{B} , if $M \leq \max(2, 2^n - 1)$.

There is no (M + 1)-slot supermap with classical control of the causal order C satisfying

$$\mathcal{C}(\underbrace{\mathcal{A},\ldots,\mathcal{A}}_{M},\mathcal{B}) = \mathcal{S}_{\text{SWITCH}}(\mathcal{A},\mathcal{B})$$
(3)

for all mixed unitary n-qubit channels A and B, if $M \leq \max(2, 2^n - 1)$.

There is no (M + 1)-slot supermap with classical control of the causal order C satisfying

$$\mathcal{C}(\underbrace{\mathcal{A},\ldots,\mathcal{A}}_{M},\mathcal{B}) = \mathcal{S}_{\text{SWITCH}}(\mathcal{A},\mathcal{B})$$
(3)

for all mixed unitary n-qubit channels A and B, if $M \leq \max(2, 2^n - 1)$.

Remark

• No-go on deterministic and exact simulation

There is no (M + 1)-slot supermap with classical control of the causal order C satisfying

$$\mathcal{C}(\underbrace{\mathcal{A},\ldots,\mathcal{A}}_{M},\mathcal{B}) = \mathcal{S}_{\text{SWITCH}}(\mathcal{A},\mathcal{B})$$
(3)

for all mixed unitary n-qubit channels A and B, if $M \leq \max(2, 2^n - 1)$.

Remark

- No-go on deterministic and exact simulation
- $\bullet\,$ Multiple copies of only ${\cal A}$

3 steps:

- 1. Linearity argument
- 2. Uniqueness
- 3. Contradiction with QC-FO conditions

3 steps:

- 1. Linearity argument
- 2. Uniqueness
- 3. Contradiction with QC-FO conditions

First, prepare a nice representation of quantum supermaps
Definition (Choi representation)

Choi matrix of a linear map $\mathcal{Q} : \mathbb{L}(A) \to \mathbb{L}(B)$:

$$Q := \sum_{ij} |i\rangle\!\langle j|^A \otimes \mathcal{Q}(|i\rangle\!\langle j|) \in \mathbb{L}(A \otimes B), \tag{4}$$

where $\{|i\rangle\}$ is the computational basis of \mathcal{H}^A and $\mathbb{L}(A)$ is the set of linear operators on \mathcal{H}^A .

Definition (Choi representation)

Choi matrix of a linear map $\mathcal{Q} : \mathbb{L}(A) \to \mathbb{L}(B)$:

$$Q \coloneqq \sum_{ij} |i\rangle \langle j|^A \otimes \mathcal{Q}(|i\rangle \langle j|) \in \mathbb{L}(A \otimes B),$$
(4)

where $\{|i\rangle\}$ is the computational basis of \mathcal{H}^A and $\mathbb{L}(A)$ is the set of linear operators on \mathcal{H}^A .

Choi matrix of unitary operation $\mathcal{U}(\cdot) = U \cdot U^{\dagger}$ is represented as a rank-1 operator

$$|U\rangle\rangle\langle\langle U|$$
 (5)

where $|U\rangle\rangle$ is a Choi vector defined by $|U\rangle\rangle \coloneqq \sum_{i} |i\rangle^{A} \otimes U |i\rangle$.

Quantum mechanics in the Choi representation

- $\bullet \ \ Composition \leftrightarrow \ link \ product$
- CPTP map $\mathcal{Q} \leftrightarrow \mathcal{Q} \geq 0$ and affine conditions on \mathcal{Q}

Link product

Link product of $Q \in \mathbb{L}(A \otimes B)$ and $R \in \mathbb{L}(B \otimes C)$

$$Q * R := \operatorname{Tr}_B[(Q^{AB} \otimes \mathbb{1}^C)^{\mathrm{T}_B}(\mathbb{1}^A \otimes R^{BC})]$$
(6)

which satisfies

$$\mathcal{Q}(\rho) = Q * \rho, \tag{7}$$

$$\mathcal{T} = \mathcal{Q} \circ \mathcal{R} \Leftrightarrow \mathcal{T} = \mathcal{Q} * \mathcal{R}.$$
(8)

QC-FO

$$S(C_1, \cdots, C_n) = \mathcal{V}_M \circ (C_n \otimes \mathbb{1}) \circ \cdots \circ (C_1 \otimes \mathbb{1}) \circ \mathcal{V}_0$$
(9)
$$S * (C_1 \otimes \cdots \otimes C_n) = V_M * C_n * \cdots * C_1 * V_0$$
(10)

for $S = V_M * \cdots * V_0$

QC-FO

$$\mathcal{S}(\mathcal{C}_1, \cdots, \mathcal{C}_n) = \mathcal{V}_M \circ (\mathcal{C}_n \otimes \mathbb{1}) \circ \cdots \circ (\mathcal{C}_1 \otimes \mathbb{1}) \circ \mathcal{V}_0 \quad (9)$$

$$\mathcal{S} * (\mathcal{C}_1 \otimes \cdots \otimes \mathcal{C}_n) = \mathcal{V}_M * \mathcal{C}_n * \cdots * \mathcal{C}_1 * \mathcal{V}_0 \quad (10)$$

for $S = V_M * \cdots * V_0$

In general, Choi matrix of the output channel $S(C_1, \dots, C_n)$ is given by $S * (C_1 \otimes \dots \otimes C_n)$

QC-FO

$$S(\mathcal{C}_1, \cdots, \mathcal{C}_n) = \mathcal{V}_M \circ (\mathcal{C}_n \otimes \mathbb{1}) \circ \cdots \circ (\mathcal{C}_1 \otimes \mathbb{1}) \circ \mathcal{V}_0 \quad (9)$$

$$S * (C_1 \otimes \cdots \otimes C_n) = V_M * C_n * \cdots * C_1 * V_0 \quad (10)$$

for $S = V_M * \cdots * V_0$

In general, Choi matrix of the output channel $S(C_1, \dots, C_n)$ is given by $S * (C_1 \otimes \dots \otimes C_n)$

S is called the Choi matrix of the supermap ${\cal S}$

Proof sketch (0. Choi representation)

Characterization of the Choi matrix S of the supermap S

Characterization of the Choi matrix ${\mathcal S}$ of the supermap ${\mathcal S}$

 ${\mathcal S}$ preserves CP maps $\Leftrightarrow {\mathcal S} \ge 0$

Characterization of the Choi matrix S of the supermap S

- S preserves CP maps $\Leftrightarrow S \ge 0$
- ${\mathcal S}$ preserves TP maps \Leftrightarrow affine conditions on ${\mathcal S}$

Characterization of the Choi matrix *S* of the supermap *S S* preserves CP maps $\Leftrightarrow S \ge 0$ *S* preserves TP maps \Leftrightarrow affine conditions on *S*

 $\mathcal{S} \in \mathsf{QC} ext{-FO} \Leftrightarrow S \geq 0$ + (more strict) affine conditions on S

Characterization of the Choi matrix *S* of the supermap *S S* preserves CP maps $\Leftrightarrow S \ge 0$ *S* preserves TP maps \Leftrightarrow affine conditions on *S* $S \in QC\text{-FO} \Leftrightarrow S \ge 0 + (\text{more strict}) \text{ affine conditions on } S$ $S \in QC\text{-CC} \Leftrightarrow S = \sum_i S_i, S_i \ge 0 + \text{ affine conditions on } \{S_i\}_i$ Characterization of the Choi matrix *S* of the supermap *S S* preserves CP maps $\Leftrightarrow S > 0$

 ${\mathcal S}$ preserves TP maps \Leftrightarrow affine conditions on ${\mathcal S}$

 $\mathcal{S} \in \mathsf{QC} ext{-FO} \Leftrightarrow S \geq 0 + (\mathsf{more \ strict})$ affine conditions on S

 $S \in \text{QC-CC} \Leftrightarrow S = \sum_i S_i, \ S_i \ge 0 + \text{affine conditions on } \{S_i\}_i$

Quantum switch

The Choi matrix $S_{\rm SWITCH}$ of the quantum switch is given by a rank-1 operator

$$S_{\text{SWITCH}} = |S_{\text{SWITCH}}\rangle \langle \langle S_{\text{SWITCH}}|$$
 (11)

3 steps:

- 1. Linearity argument
- 2. Uniqueness
- 3. Contradiction with QC-FO conditions

3 steps:

- 1. Linearity argument
- 2. Uniqueness
- 3. Contradiction with QC-FO conditions

Logical flow:

- $\bullet\,$ Assume that ${\mathcal C}$ simulates the quantum switch
 - \Rightarrow Restrict the form of *C* (steps 1, 2)

3 steps:

- 1. Linearity argument
- 2. Uniqueness
- 3. Contradiction with QC-FO conditions

Logical flow:

- Assume that C simulates the quantum switch
 ⇒ Restrict the form of C (steps 1, 2)
- The restricted form does not satisfy QC-FO conditions (step 3)

For simplicity, we consider M = 2 case

For simplicity, we consider M = 2 case

1. Linearity argument

For simplicity, we consider M = 2 case

1. Linearity argument

Assume that

$$\mathcal{C}(\mathcal{A}, \mathcal{A}, \mathcal{B}) = \mathcal{S}_{\text{SWITCH}}(\mathcal{A}, \mathcal{B})$$
(12)

for $\mathcal{A} = \mathcal{U}_1, \mathcal{U}_2, \frac{\mathcal{U}_1 + \mathcal{U}_2}{2}$ and $\mathcal{B} = \mathcal{V}$ for unitary operations $\mathcal{U}_1, \mathcal{U}_2, \mathcal{V}$,

For simplicity, we consider M = 2 case

1. Linearity argument

Assume that

$$C(\mathcal{A}, \mathcal{A}, \mathcal{B}) = \mathcal{S}_{\text{SWITCH}}(\mathcal{A}, \mathcal{B})$$
(12)

for $\mathcal{A} = \mathcal{U}_1, \mathcal{U}_2, \frac{\mathcal{U}_1 + \mathcal{U}_2}{2}$ and $\mathcal{B} = \mathcal{V}$ for unitary operations $\mathcal{U}_1, \mathcal{U}_2, \mathcal{V}$,

$$\mathcal{C}(\mathcal{U}_1, \mathcal{U}_1, \mathcal{V}) = \mathcal{S}_{\text{SWITCH}}(\mathcal{U}_1, \mathcal{V}), \quad (13)$$

$$C(\mathcal{U}_2, \mathcal{U}_2, \mathcal{V}) = S_{\text{SWITCH}}(\mathcal{U}_2, \mathcal{V}),$$
 (14)

$$\mathcal{C}(\frac{\mathcal{U}_1 + \mathcal{U}_2}{2}, \frac{\mathcal{U}_1 + \mathcal{U}_2}{2}, \mathcal{V}) = \mathcal{S}_{\text{SWITCH}}(\frac{\mathcal{U}_1 + \mathcal{U}_2}{2}, \mathcal{V}), \quad (15)$$

For simplicity, we consider M = 2 case

1. Linearity argument

Assume that

$$C(\mathcal{A}, \mathcal{A}, \mathcal{B}) = \mathcal{S}_{\text{SWITCH}}(\mathcal{A}, \mathcal{B})$$
(12)

for $\mathcal{A} = \mathcal{U}_1, \mathcal{U}_2, \frac{\mathcal{U}_1 + \mathcal{U}_2}{2}$ and $\mathcal{B} = \mathcal{V}$ for unitary operations $\mathcal{U}_1, \mathcal{U}_2, \mathcal{V}$,

$$\mathcal{C}(\mathcal{U}_1, \mathcal{U}_1, \mathcal{V}) = \mathcal{S}_{\text{SWITCH}}(\mathcal{U}_1, \mathcal{V}), \quad (13)$$

$$C(U_2, U_2, V) = S_{SWITCH}(U_2, V),$$
 (14)

$$\mathcal{C}(\frac{\mathcal{U}_1 + \mathcal{U}_2}{2}, \frac{\mathcal{U}_1 + \mathcal{U}_2}{2}, \mathcal{V}) = \mathcal{S}_{\text{SWITCH}}(\frac{\mathcal{U}_1 + \mathcal{U}_2}{2}, \mathcal{V}), \quad (15)$$

thus

$$\mathcal{C}(\mathcal{U}_1, \mathcal{U}_2, \mathcal{V}) + \mathcal{C}(\mathcal{U}_2, \mathcal{U}_1, \mathcal{V}) = \mathcal{S}_{\text{SWITCH}}(\mathcal{U}_1 + \mathcal{U}_2, \mathcal{V}).$$
(16)

- $C*(|U_1\rangle\!\rangle\!\langle\!\langle U_1|\otimes|U_2\rangle\!\rangle\!\langle\!\langle U_2|\otimes|V\rangle\!\rangle\!\langle\!\langle V|)$
- $+ C * (|U_2\rangle \rangle \langle \langle U_2 | \otimes |U_1\rangle \rangle \langle \langle U_1 | \otimes |V\rangle \rangle \langle \langle V |)$
- $= |S_{\text{SWITCH}}\rangle\!\!\langle\!\langle S_{\text{SWITCH}}|*[(|U_1\rangle\!\rangle\!\langle\!\langle U_1|+|U_2\rangle\!\rangle\!\langle\!\langle U_2|)\otimes|V\rangle\!\rangle\!\langle\!\langle V|] \quad (17)$

- $C*(|U_1\rangle\!\rangle\!\langle\!\langle U_1|\otimes|U_2\rangle\!\rangle\!\langle\!\langle U_2|\otimes|V\rangle\!\rangle\!\langle\!\langle V|)$
- $+ C * (|U_2\rangle\!\!\rangle\!\langle\!\langle U_2| \otimes |U_1\rangle\!\rangle\!\langle\!\langle U_1| \otimes |V\rangle\!\rangle\!\langle\!\langle V|) \leftarrow \mathsf{positive}$
- $= |S_{\text{SWITCH}}\rangle\!\!\langle\!\langle S_{\text{SWITCH}}|*[(|U_1\rangle\!\rangle\!\langle\!\langle U_1|+|U_2\rangle\!\rangle\!\langle\!\langle U_2|)\otimes|V\rangle\!\rangle\!\langle\!\langle V|] \quad (17)$

 $C*(|U_1\rangle\!\rangle\!\langle\!\langle U_1|\otimes|U_2\rangle\!\rangle\!\langle\!\langle U_2|\otimes|V\rangle\!\rangle\!\langle\!\langle V|)$

 $C*(|U_1
angle\!\langle\!\langle U_1|\otimes|U_2
angle\!
angle\!\langle\!\langle U_2|\otimes|V
angle\!
angle\!\langle\!\langle V|
angle$

 $\leq |S_{\text{SWITCH}}\rangle \!\!\!\! \rangle \!\!\! \langle \langle S_{\text{SWITCH}}| * [(|U_1\rangle \!\!\! \rangle \!\! \rangle \!\! \langle \langle U_1| + |U_2\rangle \!\!\! \rangle \!\! \rangle \!\! \langle \langle U_2| \rangle \otimes |V\rangle \!\!\! \rangle \!\! \rangle \!\! \langle \langle V|]$ (17)

Since $C \ge 0$, C is written as $C = \sum_i |C_i\rangle\!\rangle\!\langle\!\langle C_i|$. Then

 $|C_i\rangle\!\rangle\!\langle\!\langle C_i|*(|U_1\rangle\!\rangle\!\langle\!\langle U_1|\otimes|U_2\rangle\!\rangle\!\langle\!\langle U_2|\otimes|V\rangle\!\rangle\!\langle\!\langle V|)$

 $\leq C*(|U_1
angle
angle \langle U_1|\otimes |U_2
angle
angle \langle U_2|\otimes |V
angle
angle \langle V|)$

 $C * (|U_1\rangle\!\!\!/\!\langle U_1| \otimes |U_2\rangle\!\!/\!\langle U_2| \otimes |V\rangle\!\!/\!\langle V|)$ $\leq |S_{SWITCH}\rangle\!\!/\!\langle S_{SWITCH}| * [(|U_1\rangle\!\!/\!\langle U_1| + |U_2\rangle\!\!/\!\langle U_2|) \otimes |V\rangle\!\!/\!\langle V|] \quad (17)$ Since $C \geq 0$, C is written as $C = \sum_i |C_i\rangle\!\!/\!\langle C_i|$. Then $|C_i\rangle\!\!/\!\langle C_i| * (|U_1\rangle\!\!/\!\langle U_1| \otimes |U_2\rangle\!\!/\!\langle U_2| \otimes |V\rangle\!\!/\!\langle V|)$ $\leq C * (|U_1\rangle\!\!/\!\langle U_1| \otimes |U_2\rangle\!\!/\!\langle U_2| \otimes |V\rangle\!\!/\!\langle V|)$ $\leq |S_{SWITCH}\rangle\!/\!\langle S_{SWITCH}| * [(|U_1\rangle\!/\!\langle U_1| + |U_2\rangle\!/\!\langle U_2|) \otimes |V\rangle\!/\!\langle V|]. \quad (18)$ Thus,

 $|C_{i}\rangle\rangle * (|U_{1}\rangle\rangle \otimes |U_{2}\rangle\rangle \otimes |V\rangle\rangle)$ = $\sum_{I=1}^{2} p_{i}^{(I)}(U_{1}, U_{2}, V)|S_{SWITCH}\rangle\rangle * (|U_{I}\rangle\rangle \otimes |V\rangle\rangle)$ (19) 2. Uniqueness

¹⁰Odake, Yoshida, and Murao 2024 (Poster in Tuesday).

2. Uniqueness

$$|C_{i}\rangle\rangle * (|U_{1}\rangle\rangle \otimes |U_{2}\rangle\rangle \otimes |V\rangle\rangle)$$

= $\sum_{I=1}^{2} p_{i}^{(I)}(U_{1}, U_{2}, V)|S_{SWITCH}\rangle\rangle * (|U_{I}\rangle\rangle \otimes |V\rangle\rangle)$ (20)

¹⁰Odake, Yoshida, and Murao 2024 (Poster in Tuesday).

Proof sketch (2. Uniqueness)

2. Uniqueness

$$|C_{i}\rangle\rangle * (|U_{1}\rangle\rangle \otimes |U_{2}\rangle\rangle \otimes |V\rangle\rangle)$$

= $\sum_{I=1}^{2} p_{i}^{(I)}(U_{1}, U_{2}, V)|S_{SWITCH}\rangle\rangle * (|U_{I}\rangle\rangle \otimes |V\rangle\rangle)$ (20)

holds if

$$|C_i\rangle\rangle = \sum_{l=1}^2 |S_{\text{SWITCH}}\rangle\rangle^{/3} \otimes |p_i^{(l)}\rangle\rangle^{\bar{l}}$$
 (21)

with
$$p_i^{(I)}(U_1, U_2, V) = |p_i^{(I)}\rangle * |U_{\overline{I}}\rangle$$
.

¹⁰Odake, Yoshida, and Murao 2024 (Poster in Tuesday).

2. Uniqueness

$$|C_{i}\rangle\rangle * (|U_{1}\rangle\rangle \otimes |U_{2}\rangle\rangle \otimes |V\rangle\rangle)$$

= $\sum_{I=1}^{2} p_{i}^{(I)}(U_{1}, U_{2}, V)|S_{\text{SWITCH}}\rangle\rangle * (|U_{I}\rangle\rangle \otimes |V\rangle\rangle)$ (20)

holds if

$$|C_i\rangle\rangle = \sum_{l=1}^{2} |S_{\text{SWITCH}}\rangle\rangle^{/3} \otimes |p_i^{(l)}\rangle\rangle^{\bar{l}}$$
(21)

with
$$p_i^{(I)}(U_1, U_2, V) = |p_i^{(I)}\rangle * |U_{\overline{I}}\rangle$$
.

We show the converse using a differentiation technique¹⁰.

¹⁰Odake, Yoshida, and Murao 2024 (Poster in Tuesday).

We show that $p_i^{(l)}(U_1, U_2, V)$ is

- 1. linear with respect to $U_{\overline{I}}$
- 2. independent of U_l and V

by differentiating with respect to U_1, U_2, V

We show that $p_i^{(l)}(U_1, U_2, V)$ is

- 1. linear with respect to $U_{\overline{I}}$
- 2. independent of U_I and V

by differentiating with respect to U_1, U_2, V $\Rightarrow \exists |p_i^{(I)}\rangle\rangle$ such that $p_i^{(I)}(U_1, U_2, V) = |p_i^{(I)}\rangle\rangle * |U_{\overline{I}}\rangle\rangle$ We show that $p_i^{(l)}(U_1, U_2, V)$ is

- 1. linear with respect to $U_{\bar{l}}$
- 2. independent of U_l and V

by differentiating with respect to U_1, U_2, V $\Rightarrow \exists |p_i^{(I)}\rangle\rangle \text{ such that } p_i^{(I)}(U_1, U_2, V) = |p_i^{(I)}\rangle\rangle * |U_{\overline{I}}\rangle\rangle$ $|C_i\rangle\rangle * (|U_1\rangle\rangle \otimes |U_2\rangle\rangle \otimes |V\rangle\rangle)$ $= \sum_{l=1}^2 p_i^{(I)}(U_1, U_2, V)|S_{\text{SWITCH}}\rangle\rangle * (|U_l\rangle\rangle \otimes |V\rangle\rangle) \quad (22)$ We show that $p_i^{(I)}(U_1, U_2, V)$ is

- 1. linear with respect to $U_{\bar{l}}$
- 2. independent of U_l and V

by differentiating with respect to
$$U_1, U_2, V$$

$$\Rightarrow \exists |p_i^{(I)}\rangle \text{ such that } p_i^{(I)}(U_1, U_2, V) = |p_i^{(I)}\rangle * |U_{\overline{I}}\rangle\rangle$$

$$|C_i\rangle * (|U_1\rangle\rangle \otimes |U_2\rangle\rangle \otimes |V\rangle\rangle)$$

$$= \sum_{l=1}^{2} (|S_{\text{SWITCH}}\rangle)^{l_3} \otimes |p_i^{(I)}\rangle\rangle^{\overline{I}} * (|U_1\rangle\rangle \otimes |U_2\rangle\rangle \otimes |V\rangle\rangle) \quad (22)$$

$$\Rightarrow |C_i\rangle\rangle = \sum_{l=1}^2 |S_{\text{switch}}\rangle\rangle^{l3} \otimes |p_i^{(l)}\rangle\rangle^{\bar{l}}$$

3. Contradiction with QC-FO conditions

3. Contradiction with QC-FO conditions

If ${\mathcal C}$ is QC-FO, then ${\mathcal C}$ should satisfy affine conditions
- 3. Contradiction with QC-FO conditions
- If C is QC-FO, then C should satisfy affine conditions

As shown in steps 1 and 2, if C simulates the quantum switch, then $C = \sum_{i} |C_i\rangle\rangle\langle\langle C_i|$ for $|C_i\rangle\rangle = \sum_{l=1}^{2} |S_{\text{SWITCH}}\rangle\rangle^{/3} \otimes |p_i^{(l)}\rangle\rangle^{\overline{l}}$

- 3. Contradiction with QC-FO conditions
- If $\mathcal C$ is QC-FO, then C should satisfy affine conditions

As shown in steps 1 and 2, if C simulates the quantum switch, then $C = \sum_{i} |C_i\rangle\rangle\langle\langle C_i|$ for $|C_i\rangle\rangle = \sum_{i=1}^{2} |S_{\text{SWITCH}}\rangle\rangle^{13} \otimes |p_i^{(I)}\rangle\rangle^{\overline{I}}$

 $\rightarrow \mathsf{Contradiction}!!$

- 3. Contradiction with QC-FO conditions
- If $\mathcal C$ is QC-FO, then C should satisfy affine conditions

As shown in steps 1 and 2, if C simulates the quantum switch, then $C = \sum_{i} |C_i\rangle\rangle\langle\langle C_i|$ for $|C_i\rangle\rangle = \sum_{l=1}^{2} |S_{\text{SWITCH}}\rangle\rangle^{/3} \otimes |p_i^{(l)}\rangle\rangle^{\overline{l}}$

$\rightarrow \mathsf{Contradiction}!!$

Similar argument for QC-CC

• Approximate or probabilistic settings?

¹¹Bavaresco et al., In preparation

- Approximate or probabilistic settings?
- More relaxed settings (e.g. only simulating reduced quantum switch)?

¹¹Bavaresco et al., In preparation

- Approximate or probabilistic settings?
- More relaxed settings (e.g. only simulating reduced quantum switch)?
- Multiple copies of both input channels ${\mathcal A}$ and ${\mathcal B}?$

¹¹Bavaresco et al., In preparation

- Approximate or probabilistic settings?
- More relaxed settings (e.g. only simulating reduced quantum switch)?
- Multiple copies of both input channels \mathcal{A} and \mathcal{B} ?
- Is it possible to exactly simulate a quantum switch by using exponentially many copies of input channels?

¹¹Bavaresco et al., In preparation

- Approximate or probabilistic settings?
- More relaxed settings (e.g. only simulating reduced quantum switch)?
- Multiple copies of both input channels \mathcal{A} and \mathcal{B} ?
- Is it possible to exactly simulate a quantum switch by using exponentially many copies of input channels?
- \rightarrow We also investigate these questions by numerical simulations in a companion paper^{11}.

¹¹Bavaresco et al., In preparation

Take home

Simulation of the quantum switch is (at least) exponentially hard

Take home

Simulation of the quantum switch is (at least) exponentially hard

Proof technique

Linear algebra + differentiation technique

Take home

Simulation of the quantum switch is (at least) exponentially hard

Proof technique

Linear algebra + differentiation technique

Thank you!